
[320] Welcome + First Lecture

Meenakshi Syamkumar

[reproducibility]

Who am I?

Meenakshi (Meena) Syamkumar
•Email: ms@cs.wisc.edu
•Please call me “Meena”

Industry and Teaching experience
•Citrix, Cisco, and Microsoft
•CS300, CS220, CS367, guest lectures in

CS640, CS740

Research
•Network measurements
•CS education

My world J

Passion: Running / working out

Who are You?

Canvas > Top Hat
• Sign in with your wisc.edu school account

Please fill this form (due next Monday, Jan 30th):
https://forms.gle/KqvLHGrCvuP9Z7wF9
Why?
• Help me get to know you
• Get survey credit
• Group formation

https://forms.gle/KqvLHGrCvuP9Z7wF9

CS 320

CS 220

STAT 340

STAT 240

Related courses

L I S 461

Upper Level Data ScienceUpper Level Computer Science

CS 354

CS 252

CS 300

CS 200

CS 400

systems
(C)

programming
(Java)

data programming
(Python)

data modeling
(R)

ethics

P1 (Project 1) will help 300-to-320 students pickup Python.

Welcome to Data Science Programming II!
Builds on CS220. https://stat.wisc.edu/undergraduate-data-science-studies/

CS220 CS320

writing correct code writing efficient code
using objects designing new types of objects

lists + dicts graphs + trees
analyzing datasets collecting + analyzing datasets

getting results getting reproducible results

plots animated visualizations

functions: f(obj) methods: obj.f()

tabular analysis simple machine learning

CS220 content (for review): https://cs220.cs.wisc.edu/f22/schedule.html

https://stat.wisc.edu/undergraduate-data-science-studies/
https://cs220.cs.wisc.edu/f22/schedule.html

Course Logistics

Course Website

It's here: https://www.msyamkumar.com/cs320/s23/schedule.html

I'll also use Canvas for four things:
• general announcements
• quizzes
• online office hours
• grade summaries & exam location / answers (individual messages)

read syllabus carefully
and checkout other content

https://www.msyamkumar.com/cs320/s23/schedule.html

Scheduled Activities
Lectures

• 3 times weekly; recommendation: bring your laptop
• Required for participation credit! Attendance recorded via TopHat quizzes (20%

score drops)
• will often be recorded + posted online (questions will be recorded -- feel free to

save until after if you aren't comfortable being recorded)
• might not post if bad in-person attendance or technical issues

Lab

• Weekly on Mondays or Tuesdays, bring a laptop
• Work through lab exercises with group mates

• 320 staff will walk around to answer questions
• Required for participation credit! Attendance recorded using name cards (3 score

drops)
• 5 points per lab

• 1 point for arriving on time, 3 points for working on the lab, 1 point for staying
until end of the lab

Class organization: People

Teams

• you'll be assigned to a team of 4-7 students (from the same lab)
• teams will last the whole semester
• some types of collaboration with team members are allowed

(not required) on graded work, such as projects + quizzes
• collaboration with non-team members in not allowed

Staff

1. Instructor
2. Teaching Assistants (grad students) – Group TA
3. Mentors (undergrads)

We all provide office hours.
Office hours are drop-in (no need to reserve).

Communication

Piazza
• find link on site
• don't post >5 lines of project-related code (considered cheating)

Email (least preferred)
• me: ms@cs.wisc.edu
• Head TA: Yiyin yshen82@wisc.edu
• Course staff: https://canvas.wisc.edu/courses/343506/pages/cs320-staff

Forms
• https://www.msyamkumar.com/cs320/s23/surveys.html
• Student Information Survey. Exam conflicts. Grading

Issues. Feedback form. Thank you form!

mailto:tharter@wisc.edu
mailto:yshen82@wisc.edu
https://canvas.wisc.edu/courses/343506/pages/cs320-staff
https://tyler.caraza-harter.com/cs320/f22/surveys.html

Graded Work: Exams / Quizzes

Final - 15%
• cumulative, individual, multi-choice, 2 hours
• one-page two-sided note sheet
• May 12th 10:05AM - 12:05PM

Ten Online Quizzes - 1% each (10% overall)
• cumulative, no time limit
• on Canvas, open book/notes
• can take together AT SAME TIME with team members

(no other human help allowed)

Midterms - 13% each (26% overall)
• cumulative, individual, multi-choice, 40 minutes
• one-page two-sided note sheet
• in class: March 3rd, April 7th

Graded Work: Projects

7 Projects - 6% each (42% overall)
• format: notebook, module, or program
• part 1: you can optionally collaborate with team
• part 2: must be individually (only help from 320 staff)
• regular deadlines on course website
• late days: overall 12 late days
• hard deadline: 7 days after the regular deadline – maximum 3

late days; 5% score penalty per day after day 3
• still a tester.py, but more depends on TA evaluation

(more plots)
• clearing auto-grader on the submission portal (course

website) is mandatory
• ask for specific feedback (constructive)

Graded Work: Attendance + Surveys

Lab attendance - 4% overall
• 3 score drops:
• use these wisely – potential sickness, planned absences
• no other exceptions

Lecture attendance - 2% overall
• 20% score drops

Surveys - 1% overall

Letter Grades

• 93% - 100%: A
• 88% - 92.99%: AB
• 80% - 87.99%: B
• 75% - 79.99%: BC
• 70% - 74.99%: C
• 60% - 69.99%: D

Grade cut-offs

• Your final grade is based on sum of all points earned.
• Your grade does not depend on other students' grade.
• Scores will NOT be rounded off at the end of the semester
• No major score changes at the end of the semester
• No extra credit

Time Commitment & Academic Conduct

Project commitment
• 10-12 hours per project is typical
• 20% of students sometimes spend 20+ hours on some projects
• recommendation: start early and be proactive

Typical Weekly Expectations
• 4 hours - lecture/lab
• 6 hours - project coding
• 2 hours - reading/quizzes/etc

Academic Conduct
• Read syllabus to make sure you know what is and isn’t

acceptable.
• We will run plagiarism detector on project submissions.

Please talk to me if you're
feeling overwhelmed with 320
or your semester in general.

Reading: same as 220/301 and some others...

I'll post links to other online articles and notes

Lectures don't assume any reading prior to class

Tips for 320 Success

1. Just show up!
Get 100% on participation, don't miss quizzes, submit group work

2. Use office hours
we're idle after a project release and swamped before a deadline

3. Do labs before projects

4. Take the lead on group collaboration

5. Learn debugging

6. Run the tester often

7. If you're struggling, reach out -- the sooner, the better

Today's Lecture:
Reproducibility

Discuss: how might we define "reproducibility" for a data scientist?

Big question: will my program run on someone else's computer?
(not necessarily written in Python)

Things to match:

1 Hardware

2 Operating System

3 Dependencies next lecture

CPU

next lecture

Hardware: Mental Model of Process Memory

Imagine...
• one huge list, per each running program process, called "address

space"
• every entry in the list is an integer between 0 and 255 (aka a "byte")

indexes (aka "addresses")

values (bytes)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

Is this really all we have for state?

...

data

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

the [3,20] list starts at index address 8 in the giant list

the [11,22,33] list starts at address 12 in the giant list

...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 11 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

implications for performance...

0 0 0 0 0 0 0 0 3 20 0 0 22 33 44 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

...

fast
L2.append(44)

slow
L2.pop(0)

We'll think more rigorously about
performance in CS 320 (big-O notation)

0 0 0 8 0 8 0 0 3 20 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

PythonTutor's visualization

the x variable is at address 3

the y variable is at address 5

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

Is this really all we have for state?

...

discuss: how?

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

???

encoding:

code
65
66
67
68
...

letter
A
B
C
D
...f = open("file.txt", encoding="utf-8")

...

0 0 0 0 0 0 0 0 0 0 0 0 0 67 65 66

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

"CAB"

code
65
66
67
68
...

letter
A
B
C
D
...

encoding:

f = open("file.txt", encoding="utf-8")

...

0 71 82 103 124 135 146 159 11

How can we use one giant list to handle the following?
• multiple lists
• variables and other references
• strings
• code

code
5
8
33
...

operation
ADD
SUB
JUMP

...

i = 0
while ????:

i += 2
what line next?

Instruction Set

...

operator
operands

0 0 0 0 0 0 0 5 4 2 33 0100

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...0 0 0 0 0 0 0 5 4 2 33 010... ...0

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

add 2 to variable

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...0 0 0 0 0 0 0 5 4 2 33 010... ...2

0 71 82 103 124 135 146 159 11

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

go back to top of loop

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

Instruction Set

...0 0 0 0 0 0 0 5 4 2 33 010... ...2

0 0 0 0 0 0 0 5 4 2 33 0

0 71 82 103 124 135 146 159 11

Instruction Set

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU

Hardware: Mental Model of CPU

CPUs interact with memory:
• keep track of what instruction we're on
• understand instruction codes
• much more

...102

0 71 82 103 124 135 146 159 11

Instruction Set

for CPU X

code
5
8
33
...

operation
ADD
SUB
JUMP

...

Hardware: Mental Model of CPU

Instruction Set

for CPU Y

code
5
8
33
...

operation
SUB
ADD

undefined
...

discuss: what would happen if a
CPU tried to execute an

instruction for a different CPU?

...0 0 0 0 0 0 0 5 4 2 33 010... ...0

0 71 82 103 124 135 146 159 11

Instruction Set

for CPU X

code
5
8
33
...

operation
ADD
SUB
JUMP

...

CPU Y

Hardware: Mental Model of CPU

Instruction Set

for CPU Y

code
5
8
33
...

operation
SUB
ADD

undefined
...

a CPU can only run programs that
use instructions it understands!

...0 0 0 0 0 0 0 5 4 2 33 010... ...0

A Program and CPU need to "fit"

CPU Y

Program B

CPU X

Program A

CPU Y

Program B

CPU X

Program A

A Program and CPU need to "fit"

CPU X

Program A

CPU Y

Program B

why haven't we noticed this yet
for our Python programs?

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

A compiler is another tool for running the same code on different CPUs

python code

machine code

Interpreters

CPU X

python.exe (X)

CPU Y

python.exe (Y)

program.py program.py
same

different

different

Interpreters (such as python.exe) make it easier to run the same code on different machines

python code

machine code

Discuss: if all CPUs had the instruction set,
would we still need a Python interpreter?

