
[320] Reproducibility 2

Meenakshi Syamkumar

1 Hardware

2 Operating System

3 Dependencies

[this semester]

many others...

Big question: will my program run on someone else's computer?
(not necessarily written in Python)

Things to match:

OS jobs: Allocate and Abstract Resources

1 Allocation 2 Abstraction

Operating System

f = open("file.txt")
data = f.read()
f.close()

ignorant of
files/directories

inconvenient

convenient

CPU X

Process A

Process B

Process Z

...waiting

running

only one process can run on CPU at a time
(or a few things if the CPU has multiple "cores")

OS decides

[like CPU, hard drive, etc]

Harder to reproduce on different OS...

CPU X

bad.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("/data/file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

f = open("c:\data\file.txt")
...

Harder to reproduce on different OS...

CPU X

good.py

Windows

Python Interpreter

The Python interpreter mostly lets you
[Python Programmer] ignore the CPU you run on.

But you still need to work a bit to "fit" the code to the OS.

solution 1:
f = open(os.path.join("data", "file.txt"))
...

solution 2:
tell anybody reproducing your results to use the same OS!

tradeoffs?

VMs (Virtual Machines) popular virtual
machine software

Physical Machine
[CPU, memory, etc]

Mac Operating System

Virtual Machine Virtual Machine

Mac OS X
Programs

programs

Linux OS Windows OS

programs programs

With the right virtual machines created and operating systems installed, you could
run programs for Mac, Linux, and Windows -- at the same time without

rebooting!

The Cloud
popular cloud providers

cloud providers let you rent VMs
in the cloud on hourly basis

(e.g., $15 / month)

VM VM VM VM

ssh session>

remote
connection

we'll use GCP virtual
machines this semester

[setup in lab]

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

ssh user@best-linux.cs.wisc.edu
run in

PowerShell/bash to
access CS lab

Linux
here

Windows, Mac,
whatever

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

Big question: will my program run on someone else's computer?

Things to match:

1 Hardware

2 Operating System

3 Dependencies

Lecture Recap: Reproducibility

we'll use Ubuntu Linux on
virtual machines in the cloud

a program must fit the CPU;
python.exe will do this, so
program.py won't have to

next time: versioning

Recap of 15 new terms
reproducibility: others can run our analysis code and get same results
process: a running program
byte: integer between 0 and 255
address space: a big "list" of bytes, per process, for all state
address: index in the big list
encoding: pairing of letters characters with numeric codes
CPU: chip that executes instructions, tracks position in code
instruction set: pairing of CPU instructions/ops with numeric codes
operating system: software that allocates+abstracts resources
resource: time on CPU, space in memory, space on SSD, etc
allocation: the giving of a resource to a process
abstraction: hiding inconvenient details with something easier to use
virtual machine: "fake" machine running on real physical machine
virtual machine: allows us to run additional operating systems
cloud: place where you can rent virtual machines and other services
ssh: secure shell -- tool that lets you remotely access another machine

[320] Version Control (git)
Meenakshi Syamkumar

Big question: will my program run on someone else's computer?

Things to match:

1 Hardware

2 Operating System

3 Dependencies

Reproducibility

we'll use Ubuntu Linux on
virtual machines in the cloud

a program must fit the CPU;
python.exe will do this, so
program.py won't have to

today: versioning

Dependency Versions

program.py

import os, sys, json
import pandas

import pandas

print("Pandas Version:", pandas.__version__)

code that uses pandas

behavior depends on which release was installed

this program "depends" on pandas

you can check a
module version

pip install pandas

pip install pandas==0.25.1

pip install pandas==0.24.0

or

or

or...

Versioning: motivation and basic concepts

Many tools auto-track history (e.g., Google Docs)

https://zapier.com/apps/google-docs/tutorials/google-docs-revision-history

what
changed

when
it changed

who
changed it

https://zapier.com/apps/google-docs/tutorials/google-docs-revision-history

Version Control Systems (VCS)
Useful for many kinds of projects
• code, papers, websites, etc
• manages all files for same project (maybe thousands) in a repository

Explicit snapshots/checkpoints, called commits
• users manually run commands to preserve good versions

Explicit commit messages
• who, what, when, why

Work can branch out and be merged back
• people can work offline
• can get feedback before merging
• humans need to resolve conflicts

when versions being merged are
too different

partner B also
working on hw.py,

without wifi

partner A working
on hw.py at school

what happens when the plane lands?

Example

time

print("hi")

hello.py
print("hello")
print("world")

hello.py
import dog
dog.bark()

hello.py

def bark():
print("bark"*10)

dog.py

add file edit file edit+add

commits:

at any point in time,
you just see one version

of the files on your computer

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Meena

commit 2
msg: upgrade light
author: Meena

commit 3
msg: save energy
author: Yiyin

bug introduced
along with feature

somebody notices
bug after commit 3

who will get blamed?

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Meena

commit 2
msg: upgrade light
author: Meena

commit 3
msg: save energy
author: Yiyin

bug introduced
along with feature

somebody notices
bug after commit 3

test.py: test.py: test.py:

Use case 1: troubleshooting discovered bug

time

commit 1
msg: first version
author: Meena

commit 2
msg: upgrade light
author: Meena

commit 3
msg: save energy
author: Meena

test.py: test.py: test.py:

commit 4
msg: my bad, my bad!
author: Meena

test.py:

Use case 2: versioned releases

time

1 2 3 4 5 6 7 8

which version would you use?

Use case 2: versioned releases

time

1 2 3 4 5 6 7 8

v1.0 v2.0 v2.1 v2.2

tag "good" commits to create releases

https://pypi.org/project/pandas/#history

https://github.com/pandas-dev/pandas/releases

https://pypi.org/project/pandas/
https://github.com/pandas-dev/pandas/releases

Use case 2: versioned releases

1 2 3 4 5a 6 7 8

v1.0 v2.0 v2.25b

v2.1

it's possible to branch out,
with some people adding features

(5a) and others debugging (5b)

Use case 3: feedback

main branch
of code

developer’s personal branch
with experimental feature

Use case 3: feedback

main branch
of code

developer’s personal branch
with experimental feature

can I merge my
code back to

the main branch?

git

Version Control System Tools

svn

git

Mercurial

TeamFoundation

tools

GitLab

BitBucket

GitHub:

git providers

Linus Torvalds
developed git to manage
Linux as a
BitKeeper replacement

signup for a free account for
next weeks lab
- do choose a name that

won't embarrass you on
a resume

- do not post course work

https://www.linuxjournal.com/content/25-years-later-interview-linus-torvalds

https://www.linuxjournal.com/content/25-years-later-interview-linus-torvalds

Git Demos

https://github.com/msyamkumar/cs320-s23-projects

Activities:
• connect to a VM via SSH
• copy ("clone") the history from a GitHub repo to the VM
• view history
• switch between versions
• write ("commit") new versions

HEAD, Branches, and Tags

Remembering commit numbers is a pain! Various kinds of
labels can serve as easy-to-remember aliases

HEAD

intern [branch]

main [branch]

experiment [branch]

v1.0 [tag] v2.0 [tag] v2.1 [tag]

HEAD: wherever you currently are (only one of these)
tag: label tied to a specific commit number
branch: label tied to end of chain (moves upon new commits)

HEAD, Branches, and Tags

What branch are we on?
git branch

Create new branch
git branch branchname

Switch branch
git checkout branchname

