1320] Complexity + Big O

Meenakshi Syamkumar

Outline

Performance and Complexity
What is a step?
Counting Executed Steps

Big O: for functions/curves

Big O: for algorithms

Performance vs. Complexity

Things that affect (total time to run):

-

Performance vs. Complexity

Things that affect (total time to run):

- speed of the computer (CPU, etc)

- speed of Python (qualityt+efficiency of interpretation)
strategy for solving the problem

how much data do we have!

Performance vs. Complexity

Things that affect (total time to run):
- speed of the computer (CPU, etc)

- speed of Python (qualityt+efficiency of interpretation)

strategy for solving the problem

how much data do we have!

how many steps must the
algorithm perform, as a function of input size?

Which algorithm is better?

fewer steps
is faster

Steps

1000

800

algorithm B
1000
algorithm JA///N**Z
2 4 6 8 10

N (data size)

Do you prefer A or BY

Which algorithm is better?

10000 1 N**2
algorithm A
8000 -
, 6000
Q.
fewer steps %
is faster 4000
20001 algorithm B
——— 1000
O]
0 20 40 60 80 100

N (data size)

Do you prefer A or BY

Which algorithm is better?

crossover point

10000 1 N**2
algorithm A
8000 -
, 6000
Q.
fewer steps %
is faster 40001
20001 5 algorithm B
———— 1000
0 §
0 20 40 60 80 100

N (data size)

Which algorithm is better?

you might still reasonably
care about this portion!

10000 | crossover point N*%2
algorithm A
8000 -
, 6000
Q.
fewer steps %
is faster 4000+
20001 5 algorithm B
— 1000
0 §
0 20 40 60 80 100

N (data size)

complexity analysis only
cares about "big" inputs

What is the asymptotic behavior of the function?

Performance vs. Complexity

Things that affect (total time to run):
- speed of the computer (CPU, etc)

- speed of Python (qualityt+efficiency of interpretation)

strategy for solving the problem

how much data do we have!

\/ / what is this?

how many must the
algorithm perform, as a function of input size?

Outline

Performance and Complexity
What is a step!
Counting Executed Steps

Big O: for functions/curves

Big O: for algorithms

What Is a step! ”“'

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

/ input size is length of this list

input nums = [2, 3, ...]
STEP odd count = 0
STEP odd sum = 0
STEP for num in input nums:

STEP if num % 2 == 1:
STEP odd count += 1
STEP odd sum += num

STEP odd _avg = odd_sum
STEP odd_avg /= odd count

What Is a step! "“'

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

STEP

STEP
STEP

STEP

STEP

input nums = [2, 3, ...]

odd count 0

odd sum = 0

for num in input nums:
if num % == 1:

odd count += 1
odd sum += num

odd avg = odd sum
odd avg /= odd count

also a valid
breakdown
into steps

What Is a step? "“'

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]

odd count = 0
odd sum = 0
STEP for num in input nums:

STEP if num % ==]

STEP

STEP odd count += 1
odd sum += num
S odd avg = odd sum / odd count

One line can do a lot, so no reason to
have lines and steps be equivalent

What Is a step! "“'

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]

odd count = 0

odd sum = 0

STEP for num in input nums:
STEP if num % ==]:
odd count += 1
odd sum += num

odd avg = odd sum / odd count

STEP

STEP

STEP

Sometimes a single line is not a single step:
found = X 1in L

What Is a step! "“'

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]

odd count = 0

odd sum = 0

STEP for num in input nums:
if num % 2 == 1: ???
STEP odd count += 1
odd sum += num

odd avg = odd sum / odd count

STEP

STEP

What Is a step! "“'

"bounded" doesn't mean "fixed"

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]

odd count = 0

odd sum = 0

STEP for num in input nums:
if num % ==]z
STEP odd count += 1
odd sum += num

odd avg = odd sum / odd count

STEP

STEP

What Is a step! "“'

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

STEP

STEP
(whole loop execution,

not one pass through)

STEP

input nums = [2, 3, ...]

odd count =
odd sum = 0

0

for num in input nums:

if num % 2 == 1:
odd count += 1
odd sum += num

odd avg = odd sum / odd count

s this a valid way to identify steps!

77

What Is a step! "“'

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]

STEP odd count = 0
not a "step”, because odd sum = 0
exec time depends for num in input nums:
on input size STEP if num % ==]
(whole loop execution, odd count += 1
not one pass through) odd sum += num

odd avg = odd sum / odd count

STEP

What Is a step! "“'

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]

odd count = 0
STEP — ~

not a "step", because odd sum = 0
exec time depends for num in input nums:

on Input size STEP 1f num % 2 == 1:

(whole loop execution, odd count += 1

not one pass through) odd sum += num
odd avg = odd sum / odd count

STEP

Note! A loop that iterates a bounded number of times
(not proportional to input size) COULD be a single step.

Outline

Performance and Complexity
What is a step?
Counting Executed Steps

Big O: for functions/curves

Big O: for algorithms

Counting Executed Steps

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]

odd count = 0

odd sum = 0

STEP for num in input nums:
if num % == 1z
STEP odd count += 1
odd sum += num

odd avg = odd sum / odd count

STEP

STEP

How many total steps will execute it
len(input nums) == 10!

Counting Executed Steps

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]
| STEP odd count = 0
odd sum = 0
+11 STEP for num in input nums:
if num % == 1z
+10 STEP odd count += 1

odd sum += num
odd avg = odd sum / odd count

+1 STEP

= 23 steps
For N elements, there will be 2*N+3 steps

Counting Executed Steps

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]
STEP odd count = 0
STEP odd sum = 0
STEP for num in input nums:

9 9 9 9 9

STEP if num % 2 == 1:
STEP odd count += 1
! STEP odd sum += num

! STEP odd _avg = odd_sum
? STEP odd_avg /= odd_count

How many total steps will execute it
len(input nums) == 10!

Counting Executed Steps

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]
| STEP odd count = 0
| STEP odd sum = 0
| | STEP for num in input nums:

10 STEP if num % 2 == 1:
0to 10 STEP odd count += 1
Oto 10 STEP odd sum += num

| STEP odd avg = odd_ sum
| STEP odd _avg /= odd_count

How many total steps will execute it
len(input nums) == 10!

Counting Executed Steps

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

input nums = [2, 3, ...]
| STEP odd count = 0

+ | STEP odd sum = 0

+ 11 STEP for num in input nums:

+ 10 STEP if num % 2 == 1:
+0to 10 STEP odd count += 1
+0to 10 STEP odd sum += num

+ | STEP odd avg = odd_ sum

+ | STEP odd _avg /= odd_count

For N elements, there will be between
2*N+5 and 4*N+5 steps

Counting Executed Steps

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

| STEP
+1 STEP
+11 STEP
+10 STEP

+0to 10 STEP
+0to 10 STEP
+1 STEP
+1 STEP

input nums = [2, 3, ...]

odd count = 0

odd sum = 0

for num in input nums:

if num % 2 == 1:

odd count += 1
odd sum += num

odd avg = odd sum

odd avg /= odd count

For N elements, there will be between
2EN=+5 and 4*N+5 steps

usually we care about
the worst case

Counting Executed Steps

A s any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

2*N+3 OR 4*N+5

answer 1 answer 2

Answer 2 is never bigger than 2 times answer 1.
Answer 1 is never bigger than answer 2.

Important: we might not identify steps the same, but can we broadly
our execution counts can at most differ by a constant (but rigorously)

factor! categorize based on this!?

Outline

Performance and Complexity
What is a step?
Counting Executed Steps

Big O: for functions/curves

Big O: for algorithms

How fast!

Documentation

- https://scikit-
learn.org/stable/modules/linear model.html#ordinary-least-
squares-complexity

- https://scikit-learn.org/stable/modules/tree.ntml#complexity

https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/tree.html

f(N)
Steps
S
o

Big O Notation ("O" is for "order of growth")

Goal: categorize functions (and algorithms) by how fast they grow
- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function that i1s an upper bound

1200,
1000
2%¥N*%*2 + 100 f(N) ==2N? + 100
800 - is an O(N?) function

400 ;

200 1

5 10 15 20
N (data size)

Big O Notation ("O" is for "order of growth")

Goal: categorize functions (and algorithms) by how fast they grow
- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function that i1s an upper bound

1200
1000 -
2%¥N*%*2 + 100 f(N) ==2N? + 100
800 - is an O(N?) function
n
& 600
g 2
not because N
400 N#*%2 .
IS an upper bound
200 -
0

5 10 15 20
N (data size)

Big O Notation ("O" is for "order of growth")

Goal: categorize functions (and algorithms) by how fast they grow
- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function that i1s an upper bound

1200 - 3 * N**2
crossover
oint
1000 - PO
: 2*¥N**2 + 100 f(N) ==2N2 + 100
800 - is an O(N?) function
n
& 600
0 2
not because N
400 N**2 .
IS an upper bound
200 -
0 because some multiple is an

5 10 15 20

r N rsom In
N (data size) upper bound after some point

Defining Big O

care about shape of the curve do not care about small inputs do not care about scale

If f(N) & C* g(N) for large N values and some fixed constant C

Then f(N) € O(g(N))

Defining Big O

care about shape of the curve do not care about small inputs do not care about scale

If f(N) & C* g(N) for large N values and some fixed constant C

Then f(N) € O(g(N))

Note: if {(N) is iIn O(N), then of course
f(N) is in O(N?) too. When asked, give
the most informative answer.

Defining Big O

If f(N) & C* g(N) for large N values and some fixed constant C

Then f(N) € O(g(N))

which ones
are true!

f(N) = 2N € O(N)

f(N) = 100N € O(N?)

f(N) = N2 € O(1000000N)

Defining Big O

If f(N) € C * g(N)

Then f(N) € O(g(N))

for large N values and some fixed constant C

which ones
true!

f(N) = 2N € O(N) are

f(N) = 100N € O(N?)

HIN)-="N2-€-O(000000N)

lel?2

N**2

1000000*N

500000 1000000 1500000 2000000
N (data size)

Defining Big O

If f(N) & C* g(N) for large N values and some fixed constant C

Then f(N) € O(g(N))

shortcuts

s O(3N° + N*+8N?+ 3N?+ N + 5)
Keep leading term
(if f?nite nur%wber)

O(3NY)
drop coefficients

O(N®)

Outline

Performance and Complexity
What is a step?
Counting Executed Steps

Big O: for functions/curves

Big O: for algorithms

Defining Big O

If f(N) & C* g(N) for large N values and some fixed constant C

Then f(N) € O(g(N))

We'll let f(N) be the number of steps that some
Algorithm A needs to perform for input size N.

When we say Algorithm A € O(g(N)),
we mean that f(N) € O(g(N))

If

Defining Big O

f(N) & C* g(N) for large N values and some fixed constant C

Then f(N) € O(g(N))

STEP

STEP

STEP

STEP

odd count 0

odd sum = 0

for num in input nums:

if num % 2 == 1:
odd count += 1
odd sum += num

odd avg = odd sum / odd count

For N elements, there will be 2*N+3 steps

2*N+3 £ 3* N
[for big N values]

therefore

this code is O(N)

Defining Big O

If f(N) & C* g(N) for large N values and some fixed constant C

Then f(N) € O(g(N))

STEP odd count = 0
STEP odd sum = 0 4*N+5 € 5 * N
STEP for num in input nums: [for big N values]
STEP if num % 2 == 1:
STEP odd count += 1

— therefore
STEP odd sum += num
STEP odd avg = odd sum
STEP odd_avg /= odd_count this code is O(N)

For N elements, there will be between 2*N+5 and 4*N+5 steps

Analysis of Algorithms: Key |deas

complexity: relationship between input size and steps executed

step: an operation of bounded cost (doesn't scale with input size)

asymptotic analysis: we only care about very large N values for complexity (for
example, assume a big list)

worst-case: we'll usually assume the worst arrangement of data because it's

harder to do an average case analysis (for example, assume search target at the
end of a list)

big O: if f(N) € &€ % g(IN) for large N values and some fixed constant C,
then f(N) € O(g(N))

