
[320] Complexity + Big O
Meenakshi Syamkumar

Outline

Performance and Complexity

What is a step?
Counting Executed Steps
Big O: for functions/curves
Big O: for algorithms

Performance vs. Complexity

Things that affect performance (total time to run):

- ????

Performance vs. Complexity

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)

- speed of Python (quality+efficiency of interpretation)

- algorithm: strategy for solving the problem

- input size: how much data do we have?

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)

- speed of Python (quality+efficiency of interpretation)

- algorithm: strategy for solving the problem

- input size: how much data do we have?

Performance vs. Complexity

complexity analysis: how many steps must the
algorithm perform, as a function of input size?

algorithm B

algorithm A

Do you prefer A or B?

Which algorithm is better?

fewer steps
is faster

Which algorithm is better?

algorithm A

algorithm B

Do you prefer A or B?

fewer steps
is faster

Which algorithm is better?

algorithm A

algorithm B

crossover point

fewer steps
is faster

Which algorithm is better?

algorithm A

algorithm B

What is the asymptotic behavior of the function?

crossover point

complexity analysis only
cares about "big" inputs

you might still reasonably
care about this portion!

fewer steps
is faster

Things that affect performance (total time to run):

- speed of the computer (CPU, etc)

- speed of Python (quality+efficiency of interpretation)

- algorithm: strategy for solving the problem

- input size: how much data do we have?

Performance vs. Complexity

complexity analysis: how many steps must the
algorithm perform, as a function of input size?

what is this?

Outline

Performance and Complexity

What is a step?
Counting Executed Steps
Big O: for functions/curves
Big O: for algorithms

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP
STEP
STEP
STEP

STEP

STEP

STEP

STEP

input size is length of this list

What is a step?

STEP

STEP
STEP

STEP

STEP

also a valid
breakdown
into steps

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP

STEP
STEP

STEP

STEP

One line can do a lot, so no reason to
have lines and steps be equivalent

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP

STEP
STEP

STEP

STEP

Sometimes a single line is not a single step:
found = X in L

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP

STEP

STEP

STEP

???

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

What is a step?

STEP

STEP

STEP

STEP

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

"bounded" doesn't mean "fixed"

STEP

STEP

STEP

???

is this a valid way to identify steps?

What is a step?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

(whole loop execution,
not one pass through)

STEP

STEP

STEP

not a "step", because
exec time depends

on input size

What is a step?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

(whole loop execution,
not one pass through)

STEP

STEP

STEP

What is a step?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

Note! A loop that iterates a bounded number of times
(not proportional to input size) COULD be a single step.

not a "step", because
exec time depends

on input size

(whole loop execution,
not one pass through)

Outline

Performance and Complexity

What is a step?
Counting Executed Steps
Big O: for functions/curves
Big O: for algorithms

Counting Executed Steps

STEP

STEP

STEP

STEP

How many total steps will execute if
len(input_nums) == 10?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

Counting Executed Steps

STEP

STEP

STEP

STEP

For N elements, there will be 2*N+3 steps

1

+ 11

+ 10

+ 1

= 23 steps

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

STEP
STEP
STEP
STEP

STEP

STEP

STEP

STEP

Counting Executed Steps

How many total steps will execute if
len(input_nums) == 10?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

?
?
?
?

?

?

?

?

STEP
STEP
STEP
STEP

STEP

STEP

STEP

STEP

Counting Executed Steps

How many total steps will execute if
len(input_nums) == 10?

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

1
1

11
10

0 to 10

0 to 10

1

1

STEP
STEP
STEP
STEP

STEP

STEP

STEP

STEP

Counting Executed Steps

1
+ 1

+ 11
+ 10

+ 0 to 10

+ 0 to 10

+ 1

+ 1

For N elements, there will be between
2*N+5 and 4*N+5 steps

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

STEP
STEP
STEP
STEP

STEP

STEP

STEP

STEP

Counting Executed Steps

1
+ 1

+ 11
+ 10

+ 0 to 10

+ 0 to 10

+ 1

+ 1

For N elements, there will be between
2*N+5 and 4*N+5 steps

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

usually we care about
the worst case

Important: we might not identify steps the same, but
our execution counts can at most differ by a constant

factor!

can we broadly
(but rigorously)

categorize based on this?

Counting Executed Steps

A step is any unit of work with bounded execution time
(it doesn't keep getting slower with growing input size)

2*N+3 4*N+5OR
answer 1 answer 2

Answer 2 is never bigger than 2 times answer 1.
Answer 1 is never bigger than answer 2.

Outline

Performance and Complexity

What is a step?
Counting Executed Steps
Big O: for functions/curves
Big O: for algorithms

How fast?

Documentation

- https://scikit-
learn.org/stable/modules/linear_model.html#ordinary-least-
squares-complexity

- https://scikit-learn.org/stable/modules/tree.html#complexity

https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/tree.html

Big O Notation ("O" is for "order of growth")
Goal: categorize functions (and algorithms) by how fast they grow
- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function that is an upper bound

f(N) == 2N2 + 100
is an O(N2) function

f(N
)

Big O Notation ("O" is for "order of growth")

f(N) == 2N2 + 100
is an O(N2) function

not because N2

is an upper bound

Goal: categorize functions (and algorithms) by how fast they grow
- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function that is an upper bound

Big O Notation ("O" is for "order of growth")

crossover
point

f(N) == 2N2 + 100
is an O(N2) function

not because N2

is an upper bound

because some multiple is an
upper bound after some point

Goal: categorize functions (and algorithms) by how fast they grow
- do not care about scale
- do not care about small inputs
- care about shape of the curve
- strategy: find some multiple of a general function that is an upper bound

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

do not care about scalecare about shape of the curve do not care about small inputs

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

O(1)O(N)O(N2)... O(log N)
O(N!)

Sets

f(N)=2*N

Note: if f(N) is in O(N), then of course
f(N) is in O(N2) too. When asked, give
the most informative answer.

do not care about scalecare about shape of the curve do not care about small inputs

O(N log N

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

f(N) = 100N ∈ O(N2)

f(N) = 2N ∈ O(N)

f(N) = N2 ∈ O(1000000N)

which ones
are true?

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

f(N) = 100N ∈ O(N2)

f(N) = 2N ∈ O(N)

f(N) = N2 ∈ O(1000000N)

which ones
are true?

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

O(3N5 + N4 + 8N3 + 3N2 + N + 5)

shortcuts

O(3N5)

O(N5)

keep leading term
(if finite number)

drop coefficients

Outline

Performance and Complexity

What is a step?
Counting Executed Steps
Big O: for functions/curves
Big O: for algorithms

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

We'll let f(N) be the number of steps that some
Algorithm A needs to perform for input size N.

When we say Algorithm A ∈ O(g(N)),
we mean that f(N) ∈ O(g(N))

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

STEP

STEP

STEP

STEP

For N elements, there will be 2*N+3 steps

2*N+3 ≤ 3 * N
[for big N values]

therefore

this code is O(N)

Defining Big O

f(N) ≤ C * g(N)If for large N values and some fixed constant C

f(N) ∈ O(g(N))Then

4*N+5 ≤ 5 * N
[for big N values]

therefore

this code is O(N)

STEP
STEP
STEP
STEP

STEP

STEP

STEP

STEP

For N elements, there will be between 2*N+5 and 4*N+5 steps

Analysis of Algorithms: Key Ideas
complexity: relationship between input size and steps executed
step: an operation of bounded cost (doesn't scale with input size)

asymptotic analysis: we only care about very large N values for complexity (for
example, assume a big list)

worst-case: we'll usually assume the worst arrangement of data because it's
harder to do an average case analysis (for example, assume search target at the
end of a list)

big O: if f(N) ≤ C * g(N) for large N values and some fixed constant C,
big O: then f(N) ∈ O(g(N))

