[320] Machine Learning: Intro

Meenakshi Syamkumar

Functions/Models

training data

training data

this is an example of a **regression** model, which in a type of **supervised machine learning**, which is one of the 3 main categories of ML

Machine Learning

Reinforcement Learning

not covered in CS 320

https://en.wikipedia.org/wiki/Reinforcement_learning

Supervised Machine Learning

data is labeled, we know what we want to predict

Unsupervised Machine Learning

data is unlabeled, we're just looking for patterns

		te				
(x0	x1	x2	х3	x4 y	(label)
0	37	25	40	70	68	5
1	50	13	7	67	79	25
2	56	12	5	15	90	44
3	89	70	85	49	68	72
4	36	93	52	33	14	59
5	53	5	67	99	55	????
6	47	31	9	56	27	????
7	50	3	20	24	63	????
8	36	32	66	70	7	????
9	27	33	16	21	9	????

problem: can we predict an unknown **quantity** based on **features**?

train: fit a model to the relationship between some label (y) and feature (x's) values

test: make some predictions for known rows -- how close are we?

	x0	x1	x2	х3	x4	y (label)
0	37	25	40	70	68	5
1	50	13	7	67	79	25
2	56	12	5	15	90	44
3	89	70	85	49	68	72
4	36	93	52	33	14	59
5	53	5	67	99	55	????
6	47	31	9	56	27	????
7	50	3	20	2	nodel	????
8	36	32	66	70	7	????
9	27	33	16	21	9	????

predict: estimate for actual unknowns

	x0	x1	x2	х3	x4	y (label)
0	37	25	40	70	68	5
1	50	13	7	67	79	25
2	56	12	5	15	90	44
3	89	70	85	49	68	72
4	36	93	52	33	14	59
5	53	5	67	99	55	90
6	47	31	9	56	27	85
7	50	3	20	2	nodel	25
8	36	32	66	70	7	33
9	27	33	16	21	9	21

predict: estimate for actual unknowns

	x0	x1	x2	х3	x4	y (label)
0	37	25	40	70	68	5
1	50	13	7	67	79	25
2	56	12	5	15	90	44
3	89	70	85	49	68	72
4	36	93	52	33	14	59
5	53	5	67	99	55	90
6	47	31	9	56	27	85
7	50	3	20	24	63	25
8	36	32	66	70	7	33
9	27	33	16	21	9	21

interpret: what can we learn by looking directly at the model?

a problem with some **categorical** features is still a regression as long as the lable is **quantitative**

2. Classification (Supervised)

categorical label

	х0	x1	x2	х3	x4	y (label)
0	37	green	40	triangle	68	orange
1	50	green	7	circle	79	pear
2	56	red	5	circle	90	pear
3	89	blue	85	triangle	68	apple
4	36	blue	52	square	14	pear
5	53	green	67	triangle	55	????
6	47	blue	9	triangle	27	????
7	50	blue	20	circle	63	????
8	36	green	66	circle	7	????
9	27	red	16	circle	9	????

problem: can we predict an unknown **category**?

3. Clustering (Unsupervised)

no label!

	x0	x1	x2	х3	x4
0	37	25	40	70	68
1	50	13	7	67	79
2	56	12	5	15	90
3	89	70	85	49	68
4	36	93	52	33	14
5	53	5	67	99	55
6	47	31	9	56	27
7	50	3	20	24	63
8	36	32	66	70	7
9	27	33	16	21	9

problem: can we organize data into groups of similar rows?

3. Clustering (Unsupervised)

the algorithm

decides groups

there is no official grouping to check the model against, but a good grouping places similar rows together

	x0	x1	x2	х3	x4
0	-11	-7	3	20	20
1	2	-19	-30	17	31
2	8	-20	-32	-35	42
3	41	38	48	-1	20
4	-12	61	15	-17	-34
5	5	-27	30	49	7
6	-1	-1	-28	6	-21
7	2	-29	-17	-26	15
8	-12	0	29	20	-41
9	-21	1	-21	-29	-39

components original data x2 xЗ х0 x1 x1 x2 x3 х0 x4 -11 -0.0 0.6 0.5 0 0.1 -0.6 3 20 20 -7 21 0.3 -0.2 0.5 31 0.6 0.5 2 -19 -30 1 17

2

0.4

-8

2	8	-20	-32	-35	42
3	41	38	48	-1	20
4	-12	61	15	-17	-34
5	5	-27	30	49	7

• • • • • •	6	-1	-1	-28	6	-21
-------------	---	----	----	-----	---	-----

0 -11

1

- 2 -29 -17 -26 7 15
- **8** -12 0 29 20 -41
- 9 -21 1 -21 -29 -39

0.5 0.1 -0.6

x4

0.5

9 -21

original data x1 x2 xЗ x2 x3 х0 x4 х0 x1 x4 -11 0 -0.0 0.6 0.5 0.1 -0.6 З 20 **0** -11 20 -7 21 0.3 -0.2 0.5 0.6 0.5 31 1 2 -19 -30 17 1 -8 0.5 0.1 -0.6 2 8 -20 -32 -35 0.4 0.5 2 42 3 41 38 48 20 -1 **4** -12 61 15 -17 -34 weights 5 -27 30 49 pc0 pc1 pc2 5 7 -11 21 -1 -1 -28 6 -21 0 -8 6 1 -43 12 -6 2 -29 -17 -26 7 15 -58 -14 30 **8** -12 29 20 -41 2 0 1 -21 -29 -39 36 41 53

components

...

00

00

3

00

		origir	hal da	ta					cor	npone	ents	
	x0	x1	x2	x3	x4			x0	x1	x2	х3	x4
0	-11	-7	3	20	20	-43	0	-0.0	0.6	0.5	0.1	-0.6
1	2	-19	-30	17	31	12	1	0.3	-0.2	0.5	0.6	0.5
2	8	-20	-32	-35	42	-6	2	0.4	0.5	0.1	-0.6	0.5
3	41	38	48	-1	20							
4	-12	61	15	-17	-34				\mathbb{W}	eights		
5	5	-27	30	49	7				pc0	pc1	pc2	
6	-1	-1	-28	6	-21			0	-11	21	-8	
7	2	-29	-17	-26	15			1	-43	12	-6	
8	-12	0	29	20	-41			2	-58	-14	30	
٩	-21	1	-21	-20	-30			3	36	41	53	

this semester, we'll learn at least one technique in each of these four categories

Regression (Supervised) + Classification (Supervised)

linear_model.LogisticRegression([penalty, ...])
linear_model.LogisticRegressionCV(*[, Cs, ...])
linear_model.PassiveAggressiveClassifier(*)
linear_model.Perceptron(*[, penalty, alpha, ...])
linear_model.RidgeClassifier([alpha, ...])
linear_model.RidgeClassifierCV([alphas, ...])
linear_model.SGDClassifier([loss, penalty, ...])

linear_model.LinearRegression(*[, ...])
linear_model.Ridge([alpha, fit_intercept, ...])
linear_model.RidgeCV([alphas, ...])
linear_model.SGDRegressor([loss, penalty, ...])

svm.LinearSVC([penalty, loss, dual, tol, C, ...])
svm.LinearSVR(*[, epsilon, tol, C, loss, ...])

tree.DecisionTreeClassifier
tree.DecisionTreeRegressor
tree.ExtraTreeClassifier
tree.ExtraTreeRegressor

neighbors.KNeighborsClassifier([...])
neighbors.KNeighborsRegressor([n_neighbors, ...])

3. Clustering (Unsupervised)

cluster.AffinityPropagation(*[, damping, ...])
cluster.AgglomerativeClustering([...])
cluster.Birch(*[, threshold, ...])
cluster.DBSCAN([eps, min_samples, metric, ...])
cluster.FeatureAgglomeration([n clusters, ...])
cluster.KMeans([n_clusters, init, n_init, ...])
cluster.MiniBatchKMeans([n_clusters, init, ...])
cluster.MeanShift(*[, bandwidth, seeds, ...])
cluster.OPTICS(*[, min_samples, max_eps, ...])
cluster.SpectralClustering([n_clusters, ...])
cluster.SpectralBiclustering([n_clusters, ...])

4. Decomposition (Unsupervised)

decomposition.DictionaryLearning([...])
decomposition.FactorAnalysis([n_components, ...])
decomposition.FastICA([n_components, ...])
decomposition.IncrementalPCA([n_components, ...])
decomposition.KernelPCA([n_components, ...])
decomposition.LatentDirichletAllocation([...])
decomposition.MiniBatchDictionaryLearning([...])
decomposition.NME([n_components, init, ...])
decomposition.PCA([n_components, copy, ...])
decomposition.SparsePCA([n_components, ...])
decomposition.SparseCoder(dictionary, *[, ...])
decomposition.TruncatedSVD([n_components, ...])

scikit-learn machine learning modules: https://scikit-learn.org/stable/modules/classes.html

classification!

Foundations: Modules and Math

Important Packages

We'll be learning the following to do ML and related calculations efficiently:

with matrices...

1985] [190000] 2 1 1 3 1998 254000 y = Xc + bnote! Some resources 3 4 2005 328000 will use A instead of X 4 2 2020 343000 and **x** instead of **c** Х С import numpy as np 1985 1 [41.46] b 3 1998 X = df.values1 10.36 3277.31 4 3 2005 y = np.matmul(X, c) + b1.70 2 4 2020 or X @ c

y = x * 2 not linear

y = x0*4 + x1*(-1) + x2*0.5 + ... + x10*3 linear

Calculus: Minimizing Something

training data

beds	baths	year	price	
I	l	1980	\$140K	
3	l	1990	\$240K	
3	4	2004	\$295K	

how do we optimize **c** to minimize **loss**? Important concepts: derivative, gradient

(pytorch can do this)

Conclusion: Developers vs. Users

Conclusion: Our Focus

how can we clean this up?

